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1. INTRODUCTION

One of the most readily assimilated mechanical structures, in which both forced and
parametric vibration phenomena can occur, is the base excited cantilever beam. In the
context of parametric vibrations this structure has been considered by many researchers
either alone [1, 2], or as part of a larger structural system [3, 4], on the understanding that it
is the orientation of the beam relative to the direction of excitation which determines
whether the system is forced or parametric in nature. In the case of forced vibration the
model can be linear or non-linear and is frequently characterized by modal di!erential
equations of motion, noting that the equations of motion in this case always exhibit
constant coe$cients. This is not the case for parametric vibrations where the governing
equations of motion contain certain terms in which the coe$cients are time variant,
irrespective of whether they are cast in the modal space or not, or whether they are linear or
non-linear. The paper by Cartmell [5] was an attempt to unify the necessary kinematics and
dynamics for a simple vertical beam with a lumped end mass which is undergoing a single
frequency harmonic excitation in the sti! y direction, as shown in Figure 1. The
development in reference [5] attempted to demonstrate that this system is parametric in
nature by deriving the necessary kinematic relationships for combined bending and
torsional motions of the beam and from these leading on to three non-linear modal
equations of motion by recourse to a Lagrangian derivation. Much of the work in this paper
was newly presented as a uni"cation based around this particular physical problem and
involved certain approximations, some justi"able in the engineering sense, others less so. It
is the purpose of this letter to examine key stages of this useful analysis once again and to
add justi"cation to some of the principal features of the development in reference [5] whilst
improving other, weaker aspects of that work by means of new and rigorous analysis. The
motivation for this work is the enduring usefulness of simple structural systems for the
investigation and interpretation of complex vibrational phenomena both for the researcher
and the educator.

2. SUMMARY OF KINEMATICS

Figure 1 de"nes the beam length l as the portion of the beam emerging from the top of the
base-clamp as far as the point where it enters the end mass, this is an improvement on
the earlier schematic in reference [5] where the length l of the beam was de"ned as far as the
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Figure 1. Physical representation of the system.
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centre of the end mass. This was not strictly correct, but, as is shown later, does not turn out
to be a serious error. Thus it is correct to say that u

o
(t)"u(l

o
, t), v

o
(t)"v (l

o
, t), w

o
(t)"w (l

o
, t)

and /
o
(t)"/(l

o
, t), where u, v, w and / are all functions of z and t. The o-subscripted

displacements are de"nitionally considered to be at the centre of mass of the end mass, B,
whereas the unsubscripted displacements are at some arbitrary location along the beam,
shown here as A.

Figure 2 shows an element of the beam, for convenience taken at point A in Figure 1, in
both the undeformed and the deformed states. It can be clearly seen that u(z, t) represents
motion purely in the Oxz-plane (known informally as the #exible plane) whereas v(z, t)
de"nes motion purely in the sti! plane, Oyz. Rotation about the deformed z-axis, i.e. the
Z-axis, is denoted by /(z, t). In reference [5] it was shown that application of the
Euler}Kirchho!}Love theory for rods [6] could lead to relatively simple kinematic
expressions for curvatures about the deformed X and > axes for the element under the
assumption of small bending, u, in the x direction and small bending, v, in the y direction.
Denoting elemental curvatures about X and >, as i

1
and i

2
, respectively, it was shown in

reference [5] that these are given by

i
1
"uA/!vA and i

2
"vA/#uA, (1)

where, in this letter, @ denotes di!erentiation with respect to z and ) denotes di!erentiation
with respect to t.



Figure 2. An element of the beam in both its undeformed and deformed states.
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The earlier assumption, which continues to be justi"able, was that the beam is extremely
sti! in the Oyz-plane, and therefore in the deformed > direction which led to the further
assumption that i

1
is virtually zero, from which it is possible to write

uA/"vA (2)

and

i
2
"uA (1#/2). (3)

A useful physical perspective on this is to consider that at a "xed time, given small u(z) and
v(z) then /(z) must satisfy equation (2), provided /(z) turns out to be small as well, in order
to ensure that i

1
equals zero, Thus, on this basis, the analysis in reference [5] remains

formally unchanged up to this point (equation (38) in that paper) but with the slight
notational and de"nitional improvements given above taken on board. It can also be seen
in reference [7] that equations (1) and (2) have been restated there, but with no explicit
development.

At this point it is expedient to consider a "xed time so that under the assumptions of
small displacement u(z) and i

1
"0, the smaller displacement v(z), in the direction of the

excitation, can be expressed as a function of u(z) and /(z) by further consideration of the
system geometry. This is shown in Figure 3, wherein it should be noted that two reference
points are taken, P and Q, at distances z and z#dz, respectively, along the deformed Z-axis.
It is helpful to strengthen this argument by emphasizing that because the displacement u in
the x direction is small and the displacement v in the y direction is even smaller, then the
distance z up the z-axis and arc length s up the deformed Z-axis are approximately equal
and can therefore be used interchangeably. Tangents to points P and Q can then be
projected onto an end-plane located at z"l. Points P and Q are analogous to the points



Figure 3. (a) The tangents at P and Q projected onto the &&end-plane'' RS¹ (z"l); (b) plan view of the
&&end-plane'' RS¹.
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O and P in Figure 5 in reference [5], but it should be noted that strictly speaking the tangent
to point O in Figure 5 of reference [5] is in fact the undeformed z-axis, therefore points
P and Q, as de"ned above, now provide the necessarily correct points of emanation for the
tangents projecting onto the end-plane. In keeping with the development of reference [5]
the length of both tangents PP@ and QQ@ is approximately l!z and so the length of the
chord P@Q@ is approximately

(l!z) dh. (4)

In Figure 3(b) it is shown that the angle between the positive x direction and the chord P@Q@
is de"ned as t and it is newly shown in Appendix A that

t(z)"/(z). (5)

This underpins the intuitive statements in Figure 5(b) in reference [5] that this angle is /.
Consequently, since / is small (sin /+/) it is acceptable to state that

dv+/(l!z)dh. (6)

Following the analysis of reference [5] a little further indicates that the curvature about
the y-axis is approximately equal to

i
2
"dh/dz. (7)

So, by taking the limit as dzP0, meaning physically that the point Q tends to coalesce with
point P in Figure 3(a), and then substituting equation (7) into equation (6) the following
equation emerges:

dv/dz"(l!z)/i
2
. (8)
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Substituting the curvature equation (3) into equation (8) and then integrating from z"0 to
z"l gives

v(l)"P
l

0

(l!z)uA(/#/3) dz. (9)

Finally, as in reference [5], the uA/3 term is neglected because / has justi"ably been
assumed to be small throughout the foregoing analysis. Thus it is found that

v(l )"P
l

0

(l!z)uA/dz. (10)

This is directly comparable with equation (47) in reference [5], with the di!erence that the
upper limit is correctly stated here as l. Equation (10) appeared with the correct upper limit
in an earlier, pre-publication, version of reference [5] but was later erroneously modi"ed
after considerable discussion with others. Additionally, the correct form of equation (10) can
be found in the work of Bux [8] and Ibrahim and Hijawi [7], but, unlike in reference [5], it
was just stated and no attempt was made to fully derive it. It can also be found, summarized
in reference [9].

The above analysis, which is based around Figure 3, provides a geometrical proof of
equation (10). However, it is also possible to obtain equation (10) simply and directly from
equation (2) and this derivation is newly presented here as follows.

Integrating equation (2) once from z"0 to z"f gives

v@(f)!v@(0)"P
f

0

uA(z)/(z) dz, (11)

but v@(0)"0 because the beam is clamped at z"0. Therefore

v@(f)"P
f

0

uA(z)/(z) dz. (12)

Integrating again and using the fact that v(0)"0, because the beam is clamped at z"0,
yields

v(l)"P
l

0
AP

f

0

uA(z)/(z) dzBdf. (13)

Finally, by changing the order of integration in equation (13), the following equation is
obtained:

v(l )"P
l

0
AP

l

z

uA(z)/(z) dfBdz

"P
l

0
AP

l

z

dfB uA(z)/(z) dz

"P
l

0

(l!z) uA(z)/(z) dz. (14)

This is equation (10).
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After having derived equation (10), the next step is to reintroduce t and to propose that
u(z, t) and /(z, t) are separable in time and space, such that

u(z, t)"f
1
(z)u

1
(t)#f

2
(z)u

2
(t) (15)

and

/(z, t)"g
1
(z)/

1
(t), (16)

in which the spatial dependency is represented by the mode shapes f
1
(z), f

2
(z) and g

1
(z) for

the fundamental and second bending and fundamental torsion modes, respectively, and the
temporal dependency is de"ned by the corresponding modal co-ordinates u

1
(t), u

2
(t) and

/
1
(t). It is important to reinforce the point made in reference [5] that this three-mode

approximation is su$cient for many problems but not for all and that the analyst could
(and should) extend the modal contribution at this point if more complicated inter-modal
phenomena are likely to be encountered. Equations (15) and (16) can then be substituted
into equation (10) to give the "nal form of the kinematic equation for v(l, t) as

v (l, t)"P
l

0

(l!z)g
1
/
1
( f A

1
u
1
#f A

2
u
2
) dz, (17)

which can be rewritten in the form

v(l, t)"B
1
/

1
u
1
#B

2
/
1
u
2
, (18)

where

B
1
"P

l

0

(l!z) g
1

f A
1

dz and B
2
"P

l

0

(l!z) g
1

f A
2

dz. (19)

Equations (17), (18), (19a) and (19b) are directly equivalent to equations (48), (49), (50) and
(51) in reference [5], respectively, but with improved notation and the correct upper
integration limit shown here.

3. ORTHOGONALITY OF THE BENDING MODES

To obtain the mode shapes for the bending u in the x direction (that is, to obtain f
1
(z),

f
2
(z), f

3
(z) ,2) the following procedure is performed.

Consider the case of pure bending in the x direction, as shown in Figure 4. The beam is
assumed to have constant mass per unit length, m, and constant #exural rigidity about the
y-axis, EI

y
. From Figure 4 it can be seen that

q"u(l, t) and
Lu(z, t)

Lz K
z/l

"tan a+a, (20)

where tan a+a because a is small. Consequently, the x-displacement of the mass centre is
q#(l

o
!l ) sin a+q#(l

o
!l ) a, since a is small. The shear force at the top of the beam,

z"l, is <. Therefore

<"m
o
(qK#(l

o
!l )aK ). (21)



Figure 4. (a) The beam bending purely in the x-direction; (b) a close-up.
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Also, the bending moment in the beam at z"l is M, so

I
G
aK"M!<(l

o
!l ), (22)

where I
G

is the moment of inertia of the end mass about an axis through its centre, parallel
to the y-axis.

As alternatives to equations (21) and (22), the shear force < can be expressed in terms of
the third spatial derivative of u at z"l, as follows:

<"EI
y

L3u(z, t)

Lz3 K
z/l

(23)

and the bending moment M can be expressed in terms of the second spatial derivative of u at
z"l, as follows:

M"!EI
y

L2u(z, t)

Lz2 K
z/l

. (24)

Substituting equation (23) into equation (21), and using equations (20a) and (20b), yields

EI
y
u@@@"m

o
(uK#(l

o
!l )uK @) at z"l. (25)
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Also, substituting equations (23) and (24) into equation (22), and using equation (20b), gives

I
G
uK @"!EI

y
(uA#(l

o
!l )u@@@) at z"l. (26)

Now suppose the system is oscillating in just one mode. In that case the bending u is given
by

u(z, t)"f (z) cosut, (27)

where u is the natural frequency of that mode and f (z) is the standard Euler}Bernoulli mode
shape for a beam clamped at z"0 (u(0, t)"u@(0, t)"0). That is

f (z)"C
1
(sinjz!sinh jz)#C

2
(cos jz!cosh jz), (28)

where j4"u2m/EI
y
. Upon using equation (27), equations (25) and (26) become,

respectively,

EI
y
f @@@ ( l )"!u2m

o
( f (l )#(l

o
!l ) f @ (l )) (29)

and

!u2I
G

f @ (l)"!EI
y
( f A (l)#(l

o
!l) f @@@ (l )). (30)

By substituting equation (28) into equations (29) and (30) two new equations are obtained
which can be used to "nd the ratio of C

2
to C

1
and to "nd the frequency equation. From the

frequency equation the eigenvalues, j
i
, and therefore the corresponding natural frequencies,

u
i
, can be found.
The mode shapes which result from the above procedure are orthogonal in the following

sense:

P
l

0

m f
i
(z) f

j
(z) dz#m

o
( f

i
(l )#(l

o
!l ) ( f @

i
(l ) ) ( f

j
(l )#(l

o
!l ) f @

j
(l ))

#I
G

f @
i
(l ) f @

j
(l )"0 for iOj. (31)

See Appendix B for a proof of equation (31). Furthermore, these mode shapes can be
normalized so that

P
l

0

m ( f
i
(z))2dz#m

o
( f

i
(l)#(l

o
!l ) f @

i
(l ))2#I

G
( f @

i
(l))2"m

o
for i"1, 2,2 . (32)

With this normalization the mode shapes are non-dimensional.
Now consider the kinetic energy, ¹, in the pure bending case. This is given by the

equation

¹"

1

2 P
l

0

m(uR (z, t))2 dz#
1

2
m

o
(qR #(l

o
!l)aR )2#

1

2
I
G
aR 2. (33)

At this point, suppose only the "rst two bending modes are taken into account, as in
equation (15). Then, by "rst substituting equations (20a) and (20b) into equation (33), and
then substituting in equation (15), and "nally using equations (31) and (32), equation (33)
becomes

¹"1
2
m

o
(uR 2

1
#uR 2

2
). (34)
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Returning to the main problem of combined bending and torsion, the expression for the
kinetic energy becomes

¹"1
2
m

o
(uR 2

1
#uR 2

2
#wR 2

o
#[vR

o
#<Q

B
]2)#1

2
I
o
/Q 2

o
, (35)

where w
o

is the vertical drop of the end mass centre, v
o

is its small displacement in the
y direction, <

B
is the support excitational displacement, I

o
is the moment of inertia of the

end mass about the deformed Z-axis and /
o
is the twist angle, measured at the mass centre.

Using equation (16) shows that the twist angle, /
o
(t), satis"es

/
o
(t)"/(l

o
, t)"/(l, t)"g

1
(l)/

1
(t). (36)

Consequently, if g
1
(z) is normalized so that g

1
(l )"1, then the following equation is

obtained:

/
o
(t)"/

1
(t). (37)

The previous analysis shows that equation (35), which is equation (52) in reference [5], is
correct, in that the modes for u (u

1
and u

2
) do decouple. That is, there is no cross term

involving uR
1
uR
2

in equation (35). Furthermore, by virtue of equations (33) and (34), equation
(35) also takes into account the kinetic energy of the beam due to its bending in the
x direction and the rotational kinetic energy of the end mass about an axis through its
centre and parallel to the y-axis.

The total system potential energy is given by

;"P
l

0

1

2
EI

y
(uA)2dz#P

l

0

1

2
cGJ(/@ )2dz!m

o
gw

o
, (38)

where the "rst and second terms are the strain energies due to bending and torsion,
respectively, (see reference [10]) and the third term is the gravitational potential energy of
the end mass. The beam is assumed to have constant torsional rigidity about the z-axis, GJ,
and the constant c is to account for its non-circular cross-section. Equation (38) is directly
comparable with equation (53) in reference [5], with the di!erence that the sign in front of
the gravitational potential energy term is correctly stated here as a minus sign. This is
because w

o
is the vertical drop of the end mass centre.

For equations (35) and (38) it is assumed that l
o
!l@l. Under this assumption

v
o
(t)"v(l

o
, t)+v(l, t)"B

1
/

1
u
1
#B

2
/
1
u
2
. (39)

In obtaining the above equation, equation (18) was used. Also, under the assumption
l
o
!l@l

w
o
(t)"w (l

o
, t)+w (l, t)"

1

2 P
l

0

(u@(z, t))2dz. (40)

Ignoring the approximately equals sign in equation (40) and using equation (15) gives

w
o
"

1

2AP
l

0

( f @
1
)2dzB u2

1
#AP

l

0

f @
1

f @
2
dzB u

1
u
2
#

1

2 AP
l

0

( f @
2
)2 dzB u2

2
. (41)



174 LETTERS TO THE EDITOR
Finally, substituting equations (15), (16) and (41) into equation (38) yields

;"

1

2 CEI
y P

l

0

( f A
1
)2dz!m

o
g P

l

0

( f @
1
)2dzDu2

1

#CEI
y P

l

0

f A
1

f A
2
dz!m

o
g P

l

0

f @
1

f @
2

dzDu
1

u
2

#

1

2 CEI
y P

l

0

( f A
2
)2dz!m

o
g P

l

0

( f @
2
)2dzDu2

2

#

1

2
cGJ CP

l

0

(g@
1
)2 dzD /2

1
. (42)

Equations (41) and (42) are the equivalents of equations (55) and (56) in reference [5]
respectively. However, the cross terms (those involving u

1
u
2
) are correctly shown here and

they do not disappear, as shown in reference [5].

4. CONCLUSIONS

The purpose of this letter has been to re-examine the study by Cartmell [5]. In that paper
Cartmell investigated the kinematics and dynamics of a slender vertical beam with an end
mass, which was excited at its base by a harmonic excitation in the sti! direction.

This letter has strengthened the geometrical proof of the important equation for the small
displacement, v(l), of the top of the beam in the y direction. That is, it has strengthened the
proof of equation (47) in reference [5], which corresponds to equation (10) here.
Furthermore, it has been shown that the correct upper limit of integration of the integral in
the equation for v(l) is l and not, as shown in reference [5], l/2. This is in agreement with
a pre-publication version of reference [5] and work by Cartmell [9], Bux [8] and Ibrahim
and Hijawi [7], and as a result a con#ict in the literature has been resolved. This letter has
gone on to give a new, simple and direct proof of equation (10). The equation for v(l) is very
important because it describes the coupling between the torsion of the beam, the bending of
the beam in the #exible direction and the bending of the beam in the sti! direction, which is
the direction of excitation.

Next, a rigorous analysis has been presented in this letter to show that the modal
co-ordinates for the bending u in the x direction do decouple in the expression for the kinetic
energy, as shown in reference [5]. More speci"cally, this means that equation (52) in
reference [5], which is equation (35) here, is correct, in that it does not contain a cross term
(a term involving uR

1
uR
2
). In addition, the above analysis revealed that the expression for the

kinetic energy not only takes into account the kinetic energy of the end mass due to its
displacement in the x direction but also takes into account the kinetic energy of the beam
due to its bending in the x direction and the rotational kinetic energy of the end mass about
an axis through its centre and parallel to the y-axis.

Finally, it has been shown in this letter that, unfortunately, the modal co-ordinates for the
bending u in the x direction do not decouple in the expression for the potential energy. That
is, the cross term (the term involving u

1
u
2
) does not disappear, as shown in equation (56) in

reference [5], but appears as shown here in equation (42).
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APPENDIX A

To show that t(z)"/(z), "rst consider the deformed Z-axis shown in Figure 3(a). The
equation of this curve is given by

r(z)"(u(z), v(z), z). (A.1)

Therefore, the tangent vector to the curve, at height z, is

r@"(u@(z), v@(z), 1). (A.2)

Now, the general equation of a line in space is

l"a#td, (A.3)

where a is a point on the line, d is a vector parallel to the line and t is a parameter describing
the line. Consequently, by using equations (A.1) and (A.2) in equation (A.3), the equation of
the tangent to the deformed Z-axis, at height z, is

l"(u(z), v(z), z)#t (u@(z), v@(z), 1)

"(u(z)#tu@(z), v(z)#tv@ (z), z#t). (A.4)

The above equation is the equation of the line PP@ in Figure 3(a). This line intersects the
plane z"l (the &&end-plane'') when t"l!z. That is, this line intersects the plane z"l at the
point

(u(z)#(l!z)u@(z), v(z)#(l!z)v@(z), l). (A.5)
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From Figure 3(b) it can be seen that the point P@ traces out the curve R¹ as z moves from
0 to l (see Figure 3(a)). Let P@ have co-ordinates (x(z), y(z)). Then from equation (A.5)

x (z)"u(z)#(l!z)u@ (z), (A.6)

y(z)"v(z)#(l!z)v@(z). (A.7)

Also, from Figure 3(b)

dy

dx
"tan t (A.8)

but

dy

dx
"

dy/dz

dx/dz
"

v@(z)!v@(z)#(l!z)vA(z)
u@(z)!u@(z)#(l!z)uA(z)

"

vA(z)
uA(z)

. (A.9)

Upon using equation (2) (that is, using uA/"vA) the equation above becomes

dy/dx"/. (A.10)

Finally, combining equation (A.8) with equation (A.10) and using the fact that t is small, so
that tan t+t, gives

t(z)"/(z). (A.11)

APPENDIX B

To show that the mode shapes ( f
1
(z), f

2
(z), f

3
(z) ,2) for the bending u in the x direction

are orthogonal in the following sense:

P
l

0

m f
i
(z) f

j
(z) dz#m

o
( f

i
(l)#(l

o
!l) f @

i
(l)) ( f

j
(l )#(l

o
!l) f @

j
(l ))

#I
G

f @
i
(l) f @

j
(l )"0 for iOj. (B.1)

Consider two mode shapes: f
i
(z) and f

j
(z), with iOj. The mode shape f

i
(z) satis"es the

di!erential equation

EI
y

d4f
i
(z)

dz4
"u2

i
m f

i
(z) for 0(z(l (B.2)

and the mode shape f
j
(z) satis"es the di!erential equation

EI
y

d4f
j
(z)

dz4
"u2

j
m f

j
(z) for 0(z(l. (B.3)

Multiplying equation (B.3) by f
i
(z) and equation (B2) by f

j
(z), integrating them both by parts

twice over the domain 0(z(l, and "nally subtracting them gives

(u2
j
!u2

i
) P

l

0

mf
i
(z) f

j
(z) dz"f

i
(l )EI

y
f @@@
j

(l )!f @
i
(l)EI

y
f A
j

(l )

!f
j
(l)EI

y
f @@@
i

(l )#f @
j
(l )EI

y
f A
i

(l ). (B.4)
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In obtaining equation (B.4) the fact that f
i
(0)"f @

i
(0)"f

j
(0)"f @

j
(0)"0 (the beam is

clamped at z"0) has been used.
Now, from equations (29) and (30) it is possible to solve for f A(l) in terms of f (l) and f @(l),

as follows:

EI
y
f A(l )"u2 (m

o
(l
o
!l ) ( f (l)#(l

o
!l ) f @(l ))#I

G
f @(l )). (B.5)

Then, substituting equations (29) and (B.5) into equation (B.4) and performing some algebra
gives

(u2
j
!u2

i
) P

l

0

m f
i
(z) f

j
(z) dz

"!(u2
j
!u2

i
) [m

o
( f

i
(l )#(l

o
!l ) f @

i
(l )) ( f

j
(l )#(l

o
!l) f @

j
(l ) )

#I
G

f @
i
(l) f @

j
(l )]. (B.6)

Finally, taking everything in equation (B.6) onto one side and using the fact that u
i
Ou

j
,

yields

P
l

0

m f
i
(z) f

j
(z) dz#m

o
( f

i
(l)#(l

o
!l ) f @

i
(l )) ( f

j
(l)#(l

o
!l ) f @

j
(l ))

#I
G

f @
i
(l ) f @

j
(l )"0. (B.7)
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